Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 144(14): 4362-4370, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31197297

RESUMO

Optical spectroscopic imaging of biological systems has important applications in medical diagnosis, biochemistry, and image-guided surgery. Vibrational spectroscopy, such as Raman scattering, provides high chemical selectivity but is limited by weak signals and a large fluorescence background. Fluorescence imaging is often used by introducing specific dyes in biological systems to label different system parts and to increase the image contrast. However, the extrinsic fluorescence of the staining molecules often masks the intrinsic vibrational signals of biomolecules, which could also be simultaneously detected using the same excitation laser source. Therefore, fluorescence staining is often accompanied by the loss of other important complimentary information. For example, the high laser power often used for the rapid, high-quality imaging could lead to photo-induced suppression or bleaching of the fluorescence and Raman signals resulting in sample photodamage. Therefore, simultaneous imaging and photodamage analysis need to be performed in a controlled bioimaging experiment. Here we perform simultaneous spectroscopic bioimaging and photostability analysis of rhodamine 6G (R6G) stained red blood cells (RBCs) using both fluorescence and resonance Raman imaging in a single 532 nm laser excitation experiment. We develop a corresponding data processing algorithm which allows separation of the two spectroscopic signals. We control the relative intensity of the R6G and RBC signals by varying the excitation laser power and simultaneously monitor the photostability of RBCs. We observe no significant photodamage of RBCs through the absence of changes in the relative Raman peak intensities. Conversely, the R6G molecules show bleaching with the suppression of both the fluorescence and resonance Raman signals. Our approach may be generalized to other types of stained cells with the appropriate selection of fluorescent dyes and excitation sources.


Assuntos
Eritrócitos/citologia , Corantes Fluorescentes/química , Rodaminas/química , Animais , Bovinos , Luz , Rodaminas/efeitos da radiação , Espectrometria de Fluorescência , Análise Espectral Raman
2.
Surv Ophthalmol ; 63(5): 646-664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577954

RESUMO

Alterations in ocular blood flow have been implicated in mechanisms that lead to vision loss in patients with various ocular disorders such as diabetic retinopathy, glaucoma, and age-related macular degeneration. Assessment of retinal and choroidal blood flow is also a window to evaluate systemic diseases that affect microvasculature. Quantification and qualification of the blood flow in the retina and choroid help us understand pathophysiology, stratify disease risk, and monitor disease progression in these disorders. Multiple methods are used by researchers for assessment of blood flow, but a gold standard is lacking. We review commonly used methods, both invasive and noninvasive, for evaluation of blood flow, including intravital microscopy, laser Doppler velocimetry, laser Doppler flowmetry, laser interferometry, confocal scanning laser Doppler flowmetry, laser speckle flowgraphy, Doppler optical coherence tomography, blue-field entoptic simulation, retinal vessel caliber assessment, optical coherence tomography angiography, retinal function imaging, color Doppler imaging, and scanning laser ophthalmoscope angiogram. As technology evolves, better evaluation of blood flow in various ocular and systemic diseases will likely bring new perspectives into clinical practice and translate to better diagnosis and treatment.


Assuntos
Corioide/irrigação sanguínea , Técnicas de Diagnóstico Oftalmológico , Microcirculação/fisiologia , Disco Óptico/irrigação sanguínea , Retina/fisiologia , Corioide/diagnóstico por imagem , Retinopatia Diabética/fisiopatologia , Glaucoma/fisiopatologia , Humanos , Degeneração Macular/fisiopatologia , Disco Óptico/diagnóstico por imagem , Fluxo Sanguíneo Regional/fisiologia , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/fisiologia
3.
ACS Nano ; 11(12): 11986-12000, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072897

RESUMO

Understanding the delivered cellular dose of nanoparticles is imperative in nanomedicine and nanosafety, yet is known to be extremely complex because of multiple interactions between nanoparticles, their environment, and the cells. Here, we use 3-D reconstruction of agglomerates preserved by cryogenic snapshot sampling and imaged by electron microscopy to quantify the "bioavailable dose" that is presented at the cell surface and formed by the process of individual nanoparticle sequestration into agglomerates in the exposure media. Critically, using 20 and 40 nm carboxylated polystyrene-latex and 16 and 85 nm silicon dioxide nanoparticles, we show that abrupt, dose-dependent "tipping points" in agglomeration state can arise, subsequently affecting cellular delivery and increasing toxicity. These changes are triggered by shifts in the ratio of the total nanoparticle surface area to biomolecule abundance, with the switch to a highly agglomerated state effectively changing the test article midassay, challenging the dose-response paradigm for nanosafety experiments. By characterizing nanoparticle numbers per agglomerate, we show these tipping points can lead to the formation of extreme agglomeration states whereby 90% of an administered dose is contained and delivered to the cells by just the top 2% of the largest agglomerates. We thus demonstrate precise definition, description, and comparison of the nanoparticle dose formed in different experimental environments and show that this description is critical to understanding cellular delivery and toxicity. We further empirically "stress-test" the commonly used dynamic light scattering approach, establishing its limitations to present an analysis strategy that significantly improves the usefulness of this popular nanoparticle characterization technique.


Assuntos
Linfócitos B/química , Produtos Biológicos/química , Nanopartículas/química , Linfócitos B/efeitos dos fármacos , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Humanos , Tamanho da Partícula , Propriedades de Superfície
4.
J Biomed Opt ; 22(9): 91510, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28384789

RESUMO

Erythrocyte abundance, mobility, and carrying capacity make them attractive as a platform for blood analyte sensing as well as for drug delivery. Sensor-loaded erythrocytes, dubbed erythrosensors, could be reinfused into the bloodstream, excited noninvasively through the skin, and used to provide measurement of analyte levels in the bloodstream. Several techniques to load erythrocytes, thus creating carrier erythrocytes, exist. However, their cellular characteristics remain largely unstudied. Changes in cellular characteristics lead to removal from the bloodstream. We hypothesize that erythrosensors need to maintain native erythrocytes' (NEs) characteristics to serve as a long-term sensing platform. Here, we investigate two loading techniques and the properties of the resulting erythrosensors. For loading, hypotonic dilution requires a hypotonic solution while electroporation relies on electrical pulses to perforate the erythrocyte membrane. We analyze the resulting erythrosensor signal, size, morphology, and hemoglobin content. Although the resulting erythrosensors exhibit morphological changes, their size was comparable with NEs. The hypotonic dilution technique was found to load erythrosensors much more efficiently than electroporation, and the sensors were loaded throughout the volume of the erythrosensors. Finally, both techniques resulted in significant loss of hemoglobin. This study points to the need for continued development of loading techniques that better preserve NE characteristics.


Assuntos
Técnicas Biossensoriais/normas , Portadores de Fármacos , Eritrócitos/química , Membrana Eritrocítica , Humanos , Soluções Hipotônicas
5.
Nanomedicine ; 12(7): 1843-1851, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27068156

RESUMO

Cross-system comparisons of drug delivery vectors are essential to ensure optimal design. An in-vitro experimental protocol is presented that separates the role of the delivery vector from that of its cargo in determining the cell response, thus allowing quantitative comparison of different systems. The technique is validated through benchmarking of the dose-response of human fibroblast cells exposed to the cationic molecule, polyethylene imine (PEI); delivered as a free molecule and as a cargo on the surface of CdSe nanoparticles and Silica microparticles. The exposure metrics are converted to a delivered dose with the transport properties of the different scale systems characterized by a delivery time, τ. The benchmarking highlights an agglomeration of the free PEI molecules into micron sized clusters and identifies the metric determining cell death as the total number of PEI molecules presented to cells, determined by the delivery vector dose and the surface density of the cargo.


Assuntos
Benchmarking , Sistemas de Liberação de Medicamentos , Nanopartículas , Fibroblastos , Vetores Genéticos , Humanos , Polietilenoimina , Dióxido de Silício
6.
J Biophotonics ; 9(3): 201-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26929086

RESUMO

Brillouin microspectroscopy is a powerful technique for noninvasive optical imaging. In particular, Brillouin microspectroscopy uniquely allows assessing a sample's mechanical properties with microscopic spatial resolution. Recent advances in background-free Brillouin microspectroscopy make it possible to image scattering samples without substantial degradation of the data quality. However, measurements at the cellular- and subcellular-level have never been performed to date due to the limited signal strength. In this report, by adopting our recently optimized VIPA-based Brillouin spectrometer, we probed the microscopic viscoelasticity of individual red blood cells. These measurements were supplemented by chemically specific measurements using Raman microspectroscopy.


Assuntos
Espaço Intracelular , Fenômenos Mecânicos , Análise Espectral Raman/métodos , Animais , Fenômenos Biomecânicos , Bovinos , Eritrócitos/citologia , Microscopia
7.
J Colloid Interface Sci ; 466: 432-41, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26771506

RESUMO

The layer-by-layer modification of ≈5 nm mercaptocarboxylic acid stabilized gold nanoparticles was studied in an effort to illustrate effective means to overcome practical issues in handling and performing surface modification of such extremely small materials. To accomplish this, each layer deposition cycle was separated into a multi-step process wherein solution pH was controlled in two distinct phases of polyelectrolyte adsorption and centrifugation. Additionally, a solvent precipitation step was introduced to make processing more amenable by concentrating the sample and exchanging solution pH before ultracentrifugation. The pH-dependent assembly on gold nanoparticles was assessed after each layer deposition cycle by monitoring the plasmon peak absorbance location, surface charge, and the percentage of nanoparticles recovered. The selection of solution pH during the adsorption phase was found to be a critical parameter to enhance particle recovery and maximize surface charge when coating with weak polyelectrolytes. One bilayer was deposited with a high yield and the modified particles exhibited enhanced colloidal stability across a broad pH range and increased ionic strength. These findings support the adoption of this multi-step processing approach as an effective and generalizable approach to improve stability of high surface curvature particles.

8.
Adv Funct Mater ; 25(37): 5988-5998, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28725173

RESUMO

The recombinant protein Ultrabithorax (Ubx), a Drosophila melanogaster Hox transcription factor, self-assembles into biocompatible materials in vitro that are remarkably extensible and strong. Here, we demonstrate that the strength of Ubx materials is due to intermolecular dityrosine bonds. Ubx materials auto-fluoresce blue, a characteristic of dityrosine, and bind dityrosine-specific antibodies. Monitoring the fluorescence of reduced Ubx fibers upon oxygen exposure reveals biphasic bond formation kinetics. Two dityrosine bonds in Ubx were identified by site-directed mutagenesis followed by measurements of fiber fluorescent intensity. One bond is located between the N-terminus and the homeodomain (Y4/Y296 or Y12/Y293), and another bond is formed by Y167 and Y240. Fiber fluorescence closely correlates with fiber strength, demonstrating that these bonds are intermolecular. To our knowledge, this is the first identification of specific residues that participate in dityrosine bonds in protein-based materials. The percentage of Ubx molecules harboring both bonds can be decreased or increased by mutagenesis, providing an additional mechanism to control the mechanical properties of Ubx materials. Duplication of tyrosine-containing motifs in Ubx increases dityrosine content in Ubx fibers, suggesting these motifs could be inserted in other self-assembling proteins to strengthen the corresponding materials.

9.
ACS Nano ; 8(7): 6693-700, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24923782

RESUMO

Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure­response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle­cell interaction dynamics and accurately predicts the population exposure­response curves from individual cell heterogeneity distributions.


Assuntos
Nanopartículas/toxicidade , Transporte Biológico , Morte Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanopartículas/metabolismo , Fatores de Tempo
10.
Nanoscale Res Lett ; 9(1): 11, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24397935

RESUMO

We have developed a low-cost technique using a conventional microwave oven to grow layered basic zinc acetate (LBZA) nanosheets (NSs) from a zinc acetate, zinc nitrate and HMTA solution in only 2 min. The as-grown crystals and their pyrolytic decomposition into ZnO nanocrystalline NSs are characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), X-ray diffraction (XRD) and photoluminescence (PL). SEM and AFM measurements show that the LBZA NSs have typical lateral dimensions of 1 to 5 µm and thickness of 20 to 100 nm. Annealing in air from 200°C to 1,000°C results in the formation of ZnO nanocrystalline NSs, with a nanocrystallite size ranging from 16 nm at 200°C to 104 nm at 1,000°C, as determined by SEM. SEM shows evidence of sintering at 600°C. PL shows that the shape of the visible band is greatly affected by the annealing temperature and that the exciton band to defect band intensity ratio is maximum at 400°C and decreases by a factor of 15 after annealing at 600°C. The shape and thickness of the ZnO nanocrystalline NSs are the same as LBZA NSs. This structure provides a high surface-to-volume ratio of interconnected nanoparticles that is favorable for applications requiring high specific area and low resistivity such as gas sensing and dye-sensitized solar cells (DSCs). We show that resistive gas sensors fabricated with the ZnO NSs showed a response of 1.12 and 1.65 to 12.5 ppm and 200 ppm of CO at 350°C in dry air, respectively, and that DSCs also fabricated from the material had an overall efficiency of 1.3%. PACS: 81.07.-b; 62.23.Kn; 61.82.Fk.

11.
ACS Nano ; 7(7): 6194-202, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23782214

RESUMO

Quantum Dots (QDs) stabilized with dihydrolipoic acid (DHLA) were used as a template for layer-by-layer (LbL) modification to study the effect on the QD optical properties. We studied several different polyelectrolytes to determine that large quantities of monodisperse DHLA-QDs could only be obtained with the weak polyelectrolyte pair of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). The key to this success was the development of a two-step method to split the LbL process into adsorption and centrifugation phases, which require different pH solutions for optimum success. Solution pH is highlighted as an important factor to achieve sufficient QD surface coverage and QD recovery during wash cycles. We optimized the process to scale up synthesis by introducing a solvent precipitation step before ultracentrifugation that, when coupled with the correct pH conditions, results in a mean QD recovery of 86-90% after three wash cycles. We found that adsorption of PAH had a negligible effect on the quantum yield and lifetime but an additional layer of PAA resulted in a substantial decrease in both quantum yield and lifetime that could not be recovered by the addition of more layers. The PAH coating provides a protective coating that extends DHLA-QDs stability, prevents photo-oxidation mediated aggregation, alleviates concerns over batch variability, and results in pH-dependent emission.


Assuntos
Coloides/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pontos Quânticos , Concentração de Íons de Hidrogênio , Teste de Materiais , Tamanho da Partícula
12.
Appl Opt ; 52(4): 690-7, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23385907

RESUMO

The Amsterdam discrete dipole approximation (ADDA) is used to study the effects of an inhomogeneous refractive index in the surrounding medium of a microspherical resonator on the quality and position of the whispering gallery modes (WGMs). The model consists of a polystyrene microsphere with a refractive index, n, of 1.587 surrounded by water (n=1.333) and an inhomogeneity (n=1.5) on top of the microsphere. The effect of the area of the inhomogeneity on the WGMs is modeled using the ADDA code and compared with Lorenz-Mie code. WGMs of various quantum dot embedded microspheres mounted on atomic force microscope cantilevers are experimentally measured and shown to be consistent with the model.


Assuntos
Modelos Teóricos , Refratometria/instrumentação , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz
13.
Materials (Basel) ; 6(6): 2497-2507, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-28809286

RESUMO

In this report, a technique for rapid synthesis of ZnO microstructures by microwave-assisted heating of precursors at hydrothermal conditions is demonstrated. Further, the reaction mechanism for the growth of ZnO microstructures is analyzed. An accelerated rate of reaction obtained using microwaves enables a dissolution-recrystallization mechanism for generation of one dimensional (1D) rod-like structures, thereby showing that time of reaction can be used to dictate ZnO microstructure morphology.

14.
Biomacromolecules ; 12(10): 3629-37, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21892824

RESUMO

Incorporation of nanoparticles during the hierarchical self-assembly of protein-based materials can impart function to the resulting composite materials. Herein we demonstrate that the structure and nanoparticle distribution of composite fibers are sensitive to the method of nanoparticle addition and the physicochemical properties of both the nanoparticle and the protein. Our model system consists of a recombinant enhanced green fluorescent protein-Ultrabithorax (EGFP-Ubx) fusion protein and luminescent CdSe-ZnS core-shell quantum dots (QDs), allowing us to optically assess the distribution of both the protein and nanoparticle components within the composite material. Although QDs favorably interact with EGFP-Ubx monomers, the relatively rough surface morphology of composite fibers suggests EGFP-Ubx-QD conjugates impact self-assembly. Indeed, QDs templated onto EGFP-Ubx film post-self-assembly can be subsequently drawn into smooth composite fibers. Additionally, the QD surface charge impacts QD distribution within the composite material, indicating that surface charge plays an important role in self-assembly. QDs with either positively or negatively charged coatings significantly enhance fiber extensibility. Conversely, QDs coated with hydrophobic moieties and suspended in toluene produce composite fibers with a heterogeneous distribution of QDs and severely altered fiber morphology, indicating that toluene severely disrupts Ubx self-assembly. Understanding factors that impact the protein-nanoparticle interaction enables manipulation of the structure and mechanical properties of composite materials. Since proteins interact with nanoparticle surface coatings, these results should be applicable to other types of nanoparticles with similar chemical groups on the surface.


Assuntos
Materiais Biocompatíveis/síntese química , Materiais Biomiméticos/síntese química , Proteínas de Fluorescência Verde/metabolismo , Pontos Quânticos , Proteínas Recombinantes de Fusão/metabolismo , Materiais Biocompatíveis/análise , Materiais Biomiméticos/análise , Compostos de Cádmio/química , Clonagem Molecular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Luminescência , Microfibrilas/química , Nanopartículas/química , Plasmídeos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Compostos de Selênio/química , Eletricidade Estática , Propriedades de Superfície , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Bacteriana , Compostos de Zinco/química
15.
PLoS One ; 6(7): e22079, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21814567

RESUMO

When CdSe/ZnS-polyethyleneimine (PEI) quantum dots (QDs) are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG) mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the "first line of defense" for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor.


Assuntos
Compostos de Cádmio/química , Composição de Medicamentos , Fibroblastos/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoimina/química , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Técnicas Biossensoriais , Compostos de Cádmio/metabolismo , Morte Celular , Fibroblastos/citologia , Humanos , Polietilenoglicóis/metabolismo , Polietilenoimina/metabolismo , Compostos de Selênio/metabolismo , Sulfetos/metabolismo , Compostos de Zinco/metabolismo
16.
Biomed Opt Express ; 2(7): 2012-21, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21750776

RESUMO

A need exists for a long-term, minimally-invasive system to monitor blood analytes. For certain analytes, such as glucose in the case of diabetics, a continuous system would help reduce complications. Current methods suffer significant drawbacks, such as low patient compliance for the finger stick test or short lifetime (i.e., 3-7 days) and required calibrations for continuous glucose monitors. Red blood cells (RBCs) are potential biocompatible carriers of sensing assays for long-term monitoring. We demonstrate that RBCs can be loaded with an analyte-sensitive fluorescent dye. In the current study, FITC, a pH-sensitive fluorescent dye, is encapsulated within resealed red cell ghosts. Intracellular FITC reports on extracellular pH: fluorescence intensity increases as extracellular pH increases because the RBC rapidly equilibrates to the pH of the external environment through the chloride-bicarbonate exchanger. The resealed ghost sensors exhibit an excellent ability to reversibly track pH over the physiological pH range with a resolution down to 0.014 pH unit. Dye loading efficiency varies from 30% to 80%. Although complete loading is ideal, it is not necessary, as the fluorescence signal is an integration of all resealed ghosts within the excitation volume. The resealed ghosts could serve as a long-term (>1 to 2 months), continuous, circulating biosensor for the management of diseases, such as diabetes.

17.
J Biomed Opt ; 14(5): 054041, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19895142

RESUMO

Two-photon-excited fluorescence and second-harmonic generation are characterized as a function of laser pulse duration as short as sub-10-fs. A comparative study is performed where pulse duration is varied by introducing dispersion, as reported previously, and by tailoring pulse spectral width and minimizing its time-bandwidth product (transform-limited pulses). Experimental data and calculations show that characterizing a two-photon signal with the two schemes to vary pulse duration measures different phenomena. Two-photon signal characterization using dispersion-broadened pulses measures only the effect of chirp on the pulse two-photon-excitation spectrum and is independent of molecular response. Transform-limited pulses are used to measure the dependence of two-photon signal generation on pulse duration. Calculations show that deviation from the 1T(p) relationship would be expected as the transform-limited pulse spectral width approaches the molecular two-photon absorption linewidth and exhibits asymptotic behavior for pulse spectral widths 10 times greater than the absorption linewidth. Experimental measurements are consistent with the predicted behavior. The impact of using ultrashort laser pulses on the performance characteristics of nonlinear optical microscopy is discussed.


Assuntos
Meios de Contraste/química , Corantes Fluorescentes/química , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
J Biomed Opt ; 14(4): 040502, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19725707

RESUMO

Forster resonance energy transfer (FRET) between quantum dot (QD) donors and red fluorescent protein (RFP)-tagged integrin acceptors in live cells is reported for the first time. A silica microsphere was coated with CdSeZnS QDs and mounted to the cantilever of an atomic force microscope (AFM). The QD microsphere is then conjugated with fibronectin to bind with RFP-alphav integrins expressed on the surface of HeLa cells. Following AFM-controlled cell contact with the QD-microsphere structure, FRET is observed between the QD-RFP pair using a photobleaching measurement technique. This FRET probe technique provides a novel tool for studying the cell surface receptor-ligand interactions in biomedical and biological research.


Assuntos
Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica/métodos , Mapeamento de Interação de Proteínas/métodos , Pontos Quânticos , Células HeLa , Humanos
19.
Ann Biomed Eng ; 37(10): 1974-83, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19462236

RESUMO

New methods of biological analyte sensing are needed for development of miniature biosensors that are highly sensitive and require minimal sample preparation. One technique employs optical resonances, known as whispering gallery modes (WGMs), in spherical or cylindrical microstructures. The spectral positions of these resonant modes are very sensitive to the local refractive index and spectral shifts may be used to sense changes in the index. To excite these WGMs and enable remote excitation, quantum dots are embedded in polystyrene microspheres to serve as local light sources. Using a simple continuous wave excitation optical system, these sensors are demonstrated by monitoring the wavelength shift of multiple resonant modes as bulk index of refraction is changed in ethanol-water mixtures. The potential for targeted biosensing is explored through addition of a protein that adsorbs to the microsphere surface, thrombin, and one that does not, bovine serum albumin (BSA). The thrombin produced a spectral shift that was much larger than that due to the bulk index change. The BSA produced a significantly smaller shift that was slightly larger than the expected shift due to bulk index change. Most likely due to the thin, high index layer of quantum dots, microsensor response in all cases demonstrated increased sensitivity over theoretical predictions.


Assuntos
Técnicas Biossensoriais/instrumentação , Pontos Quânticos , Refratometria/instrumentação , Espectrometria de Fluorescência/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Microesferas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
IEEE Trans Nanobioscience ; 8(1): 72-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19304498

RESUMO

We report a novel technique of directly coating colloidal CdSe/ZnS core/shell quantum dots (QDs) with silk fibroin (SF), a protein derived from the Bombyx mori silk worm. The approach results in protein-modified QDs with little or no particle aggregation, and mitigates the issue of biocompatibility. QDs have desirable optical properties, such as narrow-band emission, broadband absorption, high quantum yield, and high resistance to photobleaching. SF is a fibrous protein polymer with a biomimetic peptide sequence, water and oxygen permeability, low inflammatory response, no thrombogenecity, and cellular biocompatibility, which are desirable properties for in vivo delivery. Combining the unique properties of QDs with the biocompatibility profile of SF, the approach produces particles representing a powerful tool for numerous in vivo and in vitro applications. The design and preparation of these protein-modified QDs conjugates is reported along with functional characterization using luminescence, transmission electron microscope (TEM), and atomic force microscope (AFM). Additionally, we report results obtained using the QDs conjugates as a fluorescent label for bioimaging HEYA8 ovarian cancer cells.


Assuntos
Fibroínas/química , Aumento da Imagem/métodos , Microscopia de Fluorescência/métodos , Neoplasias Ovarianas/patologia , Pontos Quânticos , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Cristalização/métodos , Feminino , Humanos , Teste de Materiais , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...